Bounding the composition length of primitive permutation groups and completely reducible linear groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Finite Completely Reducible Linear Groups

It is proved here that each finite completely reducible linear group of dimension d (over an arbitrary field) can be generated by L 3 d] elements. If a finite linear group G of dimension d is not completely reducible, then its characteristic is a prime, p say, and the factor group of G modulo the largest normal p-subgroup O.p(G) may be viewed as a completely reducible linear group acting on the...

متن کامل

Completely Reducible p-compact Groups

Rational automorphisms of products of simple p-compact groups are shown to be composites of products of rational automorphisms of the individual factors and permutation maps.

متن کامل

Distinguishing Primitive Permutation Groups

Let G be a permutation group acting on a set V . A partition π of V is distinguishing if the only element of G that fixes each cell of π is the identity. The distinguishing number of G is the minimum number of cells in a distinguishing partition. We prove that if G is a primitive permutation group and |V | ≥ 336, its distinguishing number is two.

متن کامل

On the Orders of Primitive Permutation Groups

The problem of bounding the order of a permutation group G in terms of its degree n was one of the central problems of 19th century group theory (see [4]). It is closely related to the 1860 Grand Prix problem of the Paris Academy, but its history goes in fact much further back (see e.g. [3], [1] and [10]). The heart of the problem is of course the case where G is a primitive group. The best res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2018

ISSN: 0024-6107,1469-7750

DOI: 10.1112/jlms.12138